【Spark九十七】RDD API之aggregateByKey

编程技术  /  houtizong 发布于 3年前   120

1. aggregateByKey的运行机制

 

  /**   * Aggregate the values of each key, using given combine functions and a neutral "zero value".   * This function can return a different result type, U, than the type of the values in this RDD,   * V. Thus, we need one operation for merging a V into a U and one operation for merging two U's,   * as in scala.TraversableOnce. The former operation is used for merging values within a   * partition, and the latter is used for merging values between partitions. To avoid memory   * allocation, both of these functions are allowed to modify and return their first argument   * instead of creating a new U.   */  def aggregateByKey[U: ClassTag](zeroValue: U, partitioner: Partitioner)(seqOp: (U, V) => U,      combOp: (U, U) => U): RDD[(K, U)] = {    // Serialize the zero value to a byte array so that we can get a new clone of it on each key    val zeroBuffer = SparkEnv.get.serializer.newInstance().serialize(zeroValue)    val zeroArray = new Array[Byte](zeroBuffer.limit)    zeroBuffer.get(zeroArray)    lazy val cachedSerializer = SparkEnv.get.serializer.newInstance()    val createZero = () => cachedSerializer.deserialize[U](ByteBuffer.wrap(zeroArray))    combineByKey[U]((v: V) => seqOp(createZero(), v), seqOp, combOp, partitioner)  }

从aggregateByKey的源代码中,可以看出

a.aggregateByKey把类型为(K,V)的RDD转换为类型为(K,U)的RDD,V和U的类型可以不一样,这一点跟combineByKey是一样的,即返回的二元组的值类型可以不一样

b.aggregateByKey内部是通过调用combineByKey实现的,combineByKey的createCombiner函数逻辑由zeroValue这个变量实现,zeroValue作为聚合的初始值,通常对于加法聚合则为0,乘法聚合则为1,集合操作则为空集合

c.seqOp在combineByKey中的功能是mergeValues,(U,V)=>U

d.combOp在combineByKey中的功能是mergeCombiners

 

 

2. aggregateByKey举例

2.1 求均值

 

val rdd = sc.textFile("气象数据")  val rdd2 = rdd.map(x=>x.split(" ")).map(x => (x(0).substring("从年月日中提取年月"),x(1).toInt))  val zeroValue = (0,0) val seqOp= (u:(Int, Int), v:Int) => {   (u._1 + v, u._2 + 1)  }    val compOp= (c1:(Int,Int),c2:(Int,Int))=>{    (u1._1 + u2._1, u1._2 + u2._2)  }      val vdd3 = vdd2.aggregateByKey(  zeroValue ,  seqOp,  compOp)    rdd3.foreach(x=>println(x._1 + ": average tempreture is " + x._2._1/x._2._2) 

 

从求均值的实现来看,aggregate通过提供零值的方式,避免了combineByKey中的createCombiner步骤(createCombiner本质工作就是遇到第一个key时进行初始化操作,这个初始化不是提供零值,而是对第一个(k,v)进行转换得到c的初始值))

 

 

 

 

请勿发布不友善或者负能量的内容。与人为善,比聪明更重要!

留言需要登陆哦

技术博客集 - 网站简介:
前后端技术:
后端基于Hyperf2.1框架开发,前端使用Bootstrap可视化布局系统生成

网站主要作用:
1.编程技术分享及讨论交流,内置聊天系统;
2.测试交流框架问题,比如:Hyperf、Laravel、TP、beego;
3.本站数据是基于大数据采集等爬虫技术为基础助力分享知识,如有侵权请发邮件到站长邮箱,站长会尽快处理;
4.站长邮箱:[email protected];

      订阅博客周刊 去订阅

文章归档

文章标签

友情链接

Auther ·HouTiZong
侯体宗的博客
© 2020 zongscan.com
版权所有ICP证 : 粤ICP备20027696号
PHP交流群 也可以扫右边的二维码
侯体宗的博客