hive优化(4)
编程技术  /  houtizong 发布于 3年前   136
Join查找操作的基本原则:应该将条目少的表/子查询放在 Join 操作符的左边。原因是在 Join 操作的 Reduce 阶段,位于 Join 操作符左边的表的内容会被加载进内存,将条目少的表放在左边,可以有效减少发生内存溢出错误的几率。
Join查找操作中如果存在多个join,且所有参与join的表中其参与join的key都相同,则会将所有的join合并到一个mapred程序中。
案例:
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1) 在一个mapre程序中执行join
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2) 在两个mapred程序中执行join
Map join的关键在于join操作中的某个表的数据量很小,案例:
SELECT /*+ MAPJOIN(b) */ a.key, a.value
FROM a join b on a.key = b.key
Mapjoin 的限制是无法执行a FULL/RIGHT OUTER JOIN b,和map join相关的hive参数:hive.join.emit.interval hive.mapjoin.size.key hive.mapjoin.cache.numrows
由于join操作是在where操作之前执行,所以当你在执行join时,where条件并不能起到减少join数据的作用;案例:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b ON (a.key=b.key)
WHERE a.ds='2009-07-07' AND b.ds='2009-07-07'
最好修改为:
SELECT a.val, b.val FROM a LEFT OUTER JOIN b
ON (a.key=b.key AND b.ds='2009-07-07' AND a.ds='2009-07-07')
在join操作的每一个mapred程序中,hive都会把出现在join语句中相对靠后的表的数据stream化,相对靠前的变的数据缓存在内存中。当然,也可以手动指定stream化的表:SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
请勿发布不友善或者负能量的内容。与人为善,比聪明更重要!
技术博客集 - 网站简介:
前后端技术:
后端基于Hyperf2.1框架开发,前端使用Bootstrap可视化布局系统生成
网站主要作用:
1.编程技术分享及讨论交流,内置聊天系统;
2.测试交流框架问题,比如:Hyperf、Laravel、TP、beego;
3.本站数据是基于大数据采集等爬虫技术为基础助力分享知识,如有侵权请发邮件到站长邮箱,站长会尽快处理;
4.站长邮箱:[email protected];
文章归档
文章标签
友情链接