【Spark八十四】Spark零碎知识点记录
编程技术  /  houtizong 发布于 3年前   90
1. ShuffleMapTask的shuffle数据在什么地方记录到MapOutputTracker中的
ShuffleMapTask的runTask方法负责写数据到shuffle map文件中。当任务执行完成成功,DAGScheduler会收到通知,在DAGScheduler的handleTaskCompletion方法中完成记录到MapOutputTracker中
event.reason match { case Success => listenerBus.post(SparkListenerTaskEnd(stageId, stage.latestInfo.attemptId, taskType, event.reason, event.taskInfo, event.taskMetrics)) stage.pendingTasks -= task task match { case rt: ResultTask[_, _] => stage.resultOfJob match { case Some(job) => if (!job.finished(rt.outputId)) { updateAccumulators(event) job.finished(rt.outputId) = true job.numFinished += 1 // If the whole job has finished, remove it if (job.numFinished == job.numPartitions) { markStageAsFinished(stage) cleanupStateForJobAndIndependentStages(job) listenerBus.post(SparkListenerJobEnd(job.jobId, JobSucceeded)) } // taskSucceeded runs some user code that might throw an exception. Make sure // we are resilient against that. try { job.listener.taskSucceeded(rt.outputId, event.result) } catch { case e: Exception => // TODO: Perhaps we want to mark the stage as failed? job.listener.jobFailed(new SparkDriverExecutionException(e)) } } case None => logInfo("Ignoring result from " + rt + " because its job has finished") } case smt: ShuffleMapTask => updateAccumulators(event) ///从通知事件中获得MapStatus对西那个 val status = event.result.asInstanceOf[MapStatus] ////ExecutorId val execId = status.location.executorId logDebug("ShuffleMapTask finished on " + execId) if (failedEpoch.contains(execId) && smt.epoch <= failedEpoch(execId)) { logInfo("Ignoring possibly bogus ShuffleMapTask completion from " + execId) } else { stage.addOutputLoc(smt.partitionId, status) } if (runningStages.contains(stage) && stage.pendingTasks.isEmpty) { markStageAsFinished(stage) logInfo("looking for newly runnable stages") logInfo("running: " + runningStages) logInfo("waiting: " + waitingStages) logInfo("failed: " + failedStages) if (stage.shuffleDep.isDefined) { // We supply true to increment the epoch number here in case this is a // recomputation of the map outputs. In that case, some nodes may have cached // locations with holes (from when we detected the error) and will need the // epoch incremented to refetch them. // TODO: Only increment the epoch number if this is not the first time // we registered these map outputs. ///在此处将MapOutput注册到mapOutputTracker中 mapOutputTracker.registerMapOutputs( stage.shuffleDep.get.shuffleId, stage.outputLocs.map(list => if (list.isEmpty) null else list.head).toArray, changeEpoch = true) } clearCacheLocs() if (stage.outputLocs.exists(_ == Nil)) { // Some tasks had failed; let's resubmit this stage // TODO: Lower-level scheduler should also deal with this logInfo("Resubmitting " + stage + " (" + stage.name + ") because some of its tasks had failed: " + stage.outputLocs.zipWithIndex.filter(_._1 == Nil).map(_._2).mkString(", ")) submitStage(stage) } else { val newlyRunnable = new ArrayBuffer[Stage] for (stage <- waitingStages) { logInfo("Missing parents for " + stage + ": " + getMissingParentStages(stage)) } for (stage <- waitingStages if getMissingParentStages(stage) == Nil) { newlyRunnable += stage } waitingStages --= newlyRunnable runningStages ++= newlyRunnable for { stage <- newlyRunnable.sortBy(_.id) jobId <- activeJobForStage(stage) } { logInfo("Submitting " + stage + " (" + stage.rdd + "), which is now runnable") submitMissingTasks(stage, jobId) } } } }
2. ShuffleMapTask在写shuffle map数据时(调用SortShuffleWriter.write方法),首先写内存,当内存不够使用时,将spill到磁盘;
override def write(records: Iterator[_ <: Product2[K, V]]): Unit = { if (dep.mapSideCombine) { require(dep.aggregator.isDefined, "Map-side combine without Aggregator specified!") sorter = new ExternalSorter[K, V, C]( dep.aggregator, Some(dep.partitioner), dep.keyOrdering, dep.serializer) sorter.insertAll(records) ///Spill到磁盘 } else { // In this case we pass neither an aggregator nor an ordering to the sorter, because we don't // care whether the keys get sorted in each partition; that will be done on the reduce side // if the operation being run is sortByKey. sorter = new ExternalSorter[K, V, V]( None, Some(dep.partitioner), None, dep.serializer) sorter.insertAll(records) } val outputFile = shuffleBlockManager.getDataFile(dep.shuffleId, mapId) val blockId = shuffleBlockManager.consolidateId(dep.shuffleId, mapId) val partitionLengths = sorter.writePartitionedFile(blockId, context, outputFile) ///写到磁盘文件中 shuffleBlockManager.writeIndexFile(dep.shuffleId, mapId, partitionLengths) mapStatus = MapStatus(blockManager.shuffleServerId, partitionLengths) }
3. ResultTask在都去ShuffledRDD中的数据时(通过调用HashShufflerReader),首先读取到内存,当内存不够使用时,将spill到磁盘
override def read(): Iterator[Product2[K, C]] = { val ser = Serializer.getSerializer(dep.serializer) ///将shuffle数据转换成可遍历的Iterator对象 val iter = BlockStoreShuffleFetcher.fetch(handle.shuffleId, startPartition, context, ser) val aggregatedIter: Iterator[Product2[K, C]] = if (dep.aggregator.isDefined) { ///从Mapper端读取数据前,做Combine ///combine时,可能会spill到磁盘 if (dep.mapSideCombine) { new InterruptibleIterator(context, dep.aggregator.get.combineCombinersByKey(iter, context)) } else { new InterruptibleIterator(context, dep.aggregator.get.combineValuesByKey(iter, context)) } } else { require(!dep.mapSideCombine, "Map-side combine without Aggregator specified!") // Convert the Product2s to pairs since this is what downstream RDDs currently expect iter.asInstanceOf[Iterator[Product2[K, C]]].map(pair => (pair._1, pair._2)) } // Sort the output if there is a sort ordering defined. ///对output排序,可能spill到磁盘 dep.keyOrdering match { case Some(keyOrd: Ordering[K]) => // Create an ExternalSorter to sort the data. Note that if spark.shuffle.spill is disabled, // the ExternalSorter won't spill to disk. val sorter = new ExternalSorter[K, C, C](ordering = Some(keyOrd), serializer = Some(ser)) sorter.insertAll(aggregatedIter) context.taskMetrics.memoryBytesSpilled += sorter.memoryBytesSpilled context.taskMetrics.diskBytesSpilled += sorter.diskBytesSpilled sorter.iterator case None => aggregatedIter } }
4. 任务本地性处理
a.DriverActor收到
请勿发布不友善或者负能量的内容。与人为善,比聪明更重要!
技术博客集 - 网站简介:
前后端技术:
后端基于Hyperf2.1框架开发,前端使用Bootstrap可视化布局系统生成
网站主要作用:
1.编程技术分享及讨论交流,内置聊天系统;
2.测试交流框架问题,比如:Hyperf、Laravel、TP、beego;
3.本站数据是基于大数据采集等爬虫技术为基础助力分享知识,如有侵权请发邮件到站长邮箱,站长会尽快处理;
4.站长邮箱:[email protected];
文章归档
文章标签
友情链接