为什么机器学习难以理解因果性

互联网  /  houtizong 发布于 3年前   75
人类很容易通过直觉就知道简单动作序列之间的因果性,但对于机器算法而言,因果性仍然是一大挑战。机器学习,尤其是深度神经网络,擅长于从海量数据中识别微妙的模式,但它们很难像人类那样做出因果推断。这是机器学习难以推广到更广泛领域的一个原因。Max Planck Institute for Intelligent Systems、Montreal Institute for Learning Algorithms (Mila) 和 Google Research 的研究人员最近在预印本网站发表论文探讨了这一问题。研究人员指出,今天机器学习的成功很大程度上是对独立收集且恒等分布的数据集的大规模模式识别。但随着环境日益复杂,尤其是对自动驾驶来说,缺乏对因果性的理解使得 AI 难以预测和处理新的情况。这是为什么在数百万英里的训练之后,自动驾驶汽车仍然会犯奇怪而危险错误的原因。主流机器学习算法因其可扩展性而受到青睐,但基于统计规律而不是因果性进行训练的算法是很容易失效的。

请勿发布不友善或者负能量的内容。与人为善,比聪明更重要!

留言需要登陆哦

技术博客集 - 网站简介:
前后端技术:
后端基于Hyperf2.1框架开发,前端使用Bootstrap可视化布局系统生成

网站主要作用:
1.编程技术分享及讨论交流,内置聊天系统;
2.测试交流框架问题,比如:Hyperf、Laravel、TP、beego;
3.本站数据是基于大数据采集等爬虫技术为基础助力分享知识,如有侵权请发邮件到站长邮箱,站长会尽快处理;
4.站长邮箱:514224527@qq.com;

      订阅博客周刊 去订阅

文章归档

文章标签

友情链接

Auther ·HouTiZong
侯体宗的博客
© 2020 zongscan.com
版权所有ICP证 : 粤ICP备20027696号
PHP交流群 也可以扫右边的二维码
侯体宗的博客